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Abstract. We study from the point of view of quantum information the properties of the collective os-
cillations of a linear chain of ions trapped in a linear Paul trap and composed of two ion species. We
discuss extensively sympathetic cooling of the chain and the effect of anharmonicity on laser-cooling and
quantum-information processing.

PACS. 03.67.Lx Quantum computation – 32.80.Pj Optical cooling of atoms; trapping –
42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions

1 Introduction

The rapid development of trapping techniques for neu-
tral and charged particles has constituted a breakthrough
in the investigation of quantum mechanical systems [1].
Among the many interesting experiments, ordered struc-
tures of charged ions have been achieved in Paul and
Penning traps [2,3]. Such structures are composed from
few up to thousands of particles, and they originate at
low temperature from the combined effect of the Coulomb
repulsive interaction among the ions and the trapping po-
tential [4]. Therefore, their geometry depends intrinsically
on the trap set-up.

The field of interest of these so-called “Coulomb crys-
tals” is rather broad, and in quantum optics they find an
application in the ion-trap quantum computer [5]. Here, a
string of ions is proposed as a system for processing infor-
mation, using two stable or metastable internal states of
the ions for storing the quantum information and coher-
ent interaction of the internal degrees of freedom of the
single ions with the laser light for generating the unitary
operations which process the information, while the cou-
pling among ions is provided by the collective vibrational
excitations of the chain. Present schemes for quantum in-
formation processing are based on the harmonicity of the
ionic motion [6,7]. This regime can be achieved by laser
cooling [8] the string of ions, and to a good extent the ions
can be considered to vibrate harmonically around their
equilibrium positions.

The coupling to the environment gives rise to phe-
nomena which destroy the quantum coherence required
for processing the information: decoherence affects both
the internal and the motional quantum states. For mo-
tional states, decoherence can be inhibited by applying
laser-cooling to the ion-chain on a regular rate or even
continuously. Laser-cooling does not destroy the quantum
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information stored in the internal states, provided only
some ions are addressed by the cooling laser (cooling ions),
while the chain is sympathetically cooled via the Coulomb
interaction. Furthermore it allows for simultaneous infor-
mation processing on the other ions (qu-bits), provided the
quantum gates do not require quantum coherence among
the vibrational levels, as for the gate proposed in [7] and
realized in [9]. In this respect, it is rather difficult to find
a candidate ion which is, at the same time, a good qu-
bit and cooling ion. In addition, some realizations of ion
strings for quantum information do not rely on the spa-
tial resolution of the ions with the laser [9]. Hence, one of
the most recent issues in the ion-trap quantum computer
is to use two different ionic species which compose the
ion chain, one for quantum information processing, the
other for laser-cooling [10–12]. This type of crystal, which
we call here the two-species Coulomb crystal, has been al-
ready used for imaging the mechanical effect of radiation
pressure on the crystallized ions and for sympathetic cool-
ing of big ordered ionic structures [13].

In this work we study the mechanical motion in a two-
species linear crystal from the point of view of quantum
information, illustrating the general features and the dif-
ferences from a linear crystal composed of ions of equal
masses, and we discuss in some detail sympathetic cool-
ing of the chain. The issue of decoherence is also discussed
in connection to the mechanical properties of the system.
In particular, in this paper we consider the decoherence
due to the coupling of the ionic motion to the fluctua-
tions of the electric field (which we assume to have an
instantaneous value with zero spatial gradient) along the
crystal, and thus couples with the center of mass motion.
Finally, we discuss the harmonic approximation and the
effect of the anharmonic corrections on laser cooling and
quantum information processing. An analogous analysis
has been presented in [11], where they studied one spe-
cific scheme for sympathetic cooling. Here, we study the
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more general system and its properties, and seek schemes
which are more suitable for quantum information process-
ing. In particular, we provide some examples calculated
with 115In+ and 25Mg+ ions, which have been currently
trapped and cooled in Garching [14,15].

The paper is organized as follows. In Section 2 the
small oscillations formalism is introduced, and the me-
chanical properties of a chain of ions are discussed in de-
tail. In particular, sympathetic cooling of the two-species
linear chain is studied, and the rates of cooling for dif-
ferent crystal configurations are derived. In Section 3 the
effect of the anharmonic corrections on cooling and quan-
tum information processing is discussed. Summary and
conclusions are presented in Section 4.

2 Small oscillations

In this section we investigate the collective vibrations
around the equilibrium position of a chain of ions confined
in a linear Paul trap, following the lines of the literature
of small oscillations [16]. We assume the motion to be one-
dimensional, i.e. confined along the trap axis of the linear
Paul trap. This describes with good approximation the
motion in a trap with very steep radial potential [17].

We consider a one-dimensional string of N ions with
charge e and mass equal either to M or m, aligned along
the x̂-axis, which corresponds to the axis of the linear Paul
trap. Indicating with i the position of the ion in the chain
(i = 1, ..., N), the sequence of ionic masses is described by
the array m = (m1, ...,mN ) with mi = M,m. The ions are
confined by the electrostatic potential VS and interact via
the Coulomb repulsion [18]. Sufficiently far away from the
electrodes, VS can be considered harmonic and the total
potential V has the form:

V =
N∑
i=1

1
2
u0x

2
i +

1
2

N∑
i=1

N∑
j=1,j 6=i

e2/4πε0
|xi − xj |

, (1)

where xi is the coordinate of the ion i and u0 is a constant
with the dimensions of an energy over a distance squared.
If the ions are sufficiently cold [4], they crystallize around
the classical equilibrium positions x(0)

i , which are the solu-
tions of the set of equations ∂V/∂xi|x(0)

i
= 0. Those solu-

tions are independent of the mass, as the potential of the
electrodes interacts only with the ionic charges. A charac-
teristic quantity is the equilibrium distance between two
ions:

x0 = x
(0)
2 − x

(0)
1 =

(
2e2/4πε0

u0

)1/3

, (2)

where the ions are displaced symmetrically with respect to
the center of the trap. This quantity scales the inter-ionic
distance in the chain [19].

Assuming that the collective motion of the ions around
the equilibrium position is harmonic, we approximate V
with its Taylor expansion around x(0)

i truncated to second

order. The dynamics of the system are described by the
Lagrangian

L =
1
2

[
N∑
i=1

miq̇
2
i −

N∑
i=1

Vijqiqj

]
, (3)

where qi = xi − x
(0)
i are the displacements of the ions

from the equilibrium positions, and Vij are real coefficients
which have the form:

Vij =
∂2

∂xi∂xj
V (x1, ..., xN )|{x(0)

i }
(4)

= u0 + 2
∑

k=1,k 6=i

e2/4πε0
|x(0)
i − x

(0)
k |3

if i = j

= −2
e2/4πε0

|x(0)
i − x

(0)
j |3

if i 6= j.

From (3) the equations for the normal modes of the motion
are

N∑
j=1

Vijβ
α
j = λαmiβ

α
i with α = 1, ..., N (5)

where the eigenvalues λα are real given the hermiticity of
Vij , and where βα is eigenvector at λα. Stable and har-
monic oscillations exist if the condition λα > 0 is fulfilled
for any α, as it occurs in this case. Under this condition
the frequency of the normal mode Ωα is Ωα =

√
λα. The

eigenvectors βαi are orthogonal in the Riemannian space
with metric tensor M, where M is a diagonal matrix whose
diagonal corresponds to the array m. For λα > 0, in-
troducing the mass-weighted coordinates q′i =

√
miqi the

eigenvalue problem can be rewritten as∑
j

V ′ijβ
α
j
′ = Ω2

αβ
α
i
′ for α = 1, ..., N, (6)

where now V ′ij = Vij/
√
mimj , and the metric tensor is the

identity matrix, as for Cartesian coordinates. The eigen-
value problem is now equivalent to the one of N identical
ions of unitary mass. The matrix {βαi ′} defines an orthog-
onal transformation, which reduces the system to the prin-
cipal axes α of Vij and of the kinetic term: πα =

∑
i β

α
i
′q′i.

In this representation the Lagrangian describes a set of N
independent harmonic oscillators with frequencies Ωα. We
quantize the motion by associating a quantum mechani-
cal oscillator with each mode. Then, denoting aα, a†α the
annihilation, creation operators for the mode α, respec-
tively, the coordinate πα associated with the oscillator of
frequency Ωα is written as πα =

√
~/2Ωα

(
aα + a†α

)
. Go-

ing back to the original set of coordinates qi, they have
the quantized form

qi =
1√
mi

∑
α

(βα′i )−1

√
~

2Ωα

(
aα + a†α

)
. (7)

Some general features can now be recognized. From equa-
tion (6) it is evident that the eigenmodes depend on the
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Fig. 1. (a) Eigenfrequencies of the two-ion crystal as a func-
tion of the mass ratio µ. The frequencies are rescaled by the
factor

p
u0/m. (b) Corresponding displacements in the origi-

nal axes plotted as a function of µ. Solid line: particle of mass
M . Dashed line: particle of mass m.

values of the ionic masses. Furthermore, since the matrix
Vij is symmetrical by exchange of any pair of ions, the
properties of the motion will be mainly characterized by
the symmetries of the sequence m. These properties are
reflected in the eigenmodes of the motion {βα}, and thus
they affect the coupling of the crystal to radiation.

We discuss these points below. First, we consider the
properties connected to two different values of the ionic
masses, by analysing the case of two ions. Then, we discuss
the ones connected to the symmetries of m by considering
a three-ion crystal. Finally, on the basis of equation (7) we
study the mechanical effect of radiation on the crystal, and
in particular sympathetic cooling of the chain.

2.1 Two ions of different masses

We analyse here the two-ion crystal, where the ions have
masses m and M = µm with µ real parameter, µ > 1.
For this case the secular equation (6) can be solved ana-
lytically, and the eigenfrequencies of the motion have the
form:

Ω2
± =

u0

m

(
1 +

1
µ
±
√

1 +
1
µ2
− 1
µ

)
, (8)

with corresponding displacements:

q± = N±

(
1− µ∓

√
1 + µ2 − µ
√
µ

,
1
√
µ

)
, (9)

where the first and second components refer to the par-
ticles of mass m and M , respectively. Here, N± are
the normalization factor, according to the scalar product
qi(1)qj(1) + µqi(2)qj(2) = δij with i, j = ±.

In Figures 1a and 1b we plot the eigenfrequencies and
the eigenvectors q±, respectively, as a function of µ. The
ratio µ = 1 corresponds to the the well-known case of two
ions of equal masses in a linear trap, where the ratio of the
eigenfrequencies are in the relation 1:

√
3. For this value of

µ, Ω− and Ω+ correspond to the center of mass (COM)
and stretch mode frequencies, respectively, as it can also

be verified from equation (9). As µ increases, the value of
the eigenfrequencies decreases and tends asymptotically
to the values Ω− → 0 and Ω+ →

√
2u0/m. The limit

Ω− → 0 corresponds to the case where both ions stand
still at their equilibrium position, as it can be seen in
Figure 1b, while for the limit Ω+ →

√
2u0/m the heavy

ion does not move, and the light ion oscillates around its
equilibrium position.

In the following we will concentrate on the case µ > 1.
As it is apparent from Figure 1b and equation (9) the two
modes preserve some characteristics of the case of two ions
with equal masses: in the mode of eigenfrequency Ω− the
ions oscillate in phase, whereas for Ω+ they oscillate with
opposite phases. The two modes, however, do not corre-
spond to the COM and relative motion any longer. This
can be understood by observing that, in absence of inter-
actions, the trap frequency for an ion of mass m is propor-
tional to 1/

√
m. This argument applies to an N -ion chain

of two (or more) species, and can be verified by substi-
tuting the vector qCOM = (1, 1, ..., 1)/

√
N describing the

center of mass motion inside the secular equation (5); one
obtains

∑
j Vij = u0 = miλ

COM for i = 1, ..., N , which
cannot be fulfilled for any value of λCOM, unless all masses
mi are equal.

The non-separability of the modes into center of mass
and relative motion has some consequences on the dynam-
ics. For example, for two ions the anharmonicity (i.e. the
corrections to the harmonic approximation of the poten-
tial in Eq. (3)) couples the two modes, whereas in the
crystals of ions with equal masses the COM motion is an
exact eigenmode of the problem. A further consequence is
the coupling of both modes to the fluctuations of the elec-
tric field at the trap-electrodes, since none of the modes is
orthogonal to the COM motion. The strength with which
each mode couples to this source of decoherence is a func-
tion of the mass-ratio between the species µ, as has been
discussed in [11].

2.2 N-ion crystal

As discussed above, the characteristic properties of the
motion of a two-ion crystal are a function of the mass ra-
tio µ. For crystals with N > 2 ions, some further parame-
ters characterize the properties of the motion: the number
of ions of each species and the sequence in which they
are arranged. These two features are described through
the array m. In one dimension, the relevant symmetry
property of the sequence m is the symmetry under re-
flections with respect to the center of the trap (which
is also the center of the string). This corresponds to an
invariance of the Hamiltonian under parity transforma-
tions. Be Π(N) the parity operator, defined on the wave
functions |φ(x1, x2, ..., xN )〉 of the N -ion Hilbert space as
Π(N)|φ(x1, x2, ..., xN )〉 = |φ(−xN ,−xN−1, ...,−x1)〉. This
operator has eigenvalues p = +1 (even), p = −1 (odd),
corresponding to the states with even and odd parity, re-
spectively. If the array m is symmetric under reflections,
the Hamiltonian for the small oscillations commute with
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Fig. 2. Eigenfrequencies
Ωα vs. all possible config-
urations of a N = 3 ionic
sequence made up of in-
dium (black circles) and/or
magnesium (white circles)
ions. The eigenfrequencies
are rescaled by the value of
Ω1 for a chain of magne-
sium ions.

Π(N) and the eigenmodes of equation (6) are also eigen-
vectors of Π(N) at the eigenvalue either p = 1 or p = −1.
From a simple evaluation of the number of degrees of free-
dom, one can verify that the even modes are N/2 for an
even number N of ions and (N−1)/2 for N odd. In partic-
ular, for symmetry reasons the central ion does not move
in the modes of even parity of a chain with an odd number
of ions. Thus, these modes are independent of the mass of
the central ion, as it can be deduced from equation (5).

It is instructive to take a closer look at the eigenfre-
quencies of a chain of N ions as a function of all possible
sequences m. We discuss the case of 3 ions, since it shares
some similarities with the normal modes of a triatomic
molecule, as discussed in textbooks [16], and it exhibits
features which can be extended to chains of large N .

In Figure 2 we plot the eigenfrequencies of a N = 3
chain as a function of all possible sequences of indium and
magnesium ions, where the sequences have been ordered
with increasing total mass MC of the crystal. The mode
of frequency Ω1 (solid line) is characterized by the oscil-
lation in phase of the three ions. For ions of equal mass it
corresponds to the center of mass mode, but in all cases
still represents the mechanical response of the whole crys-
tal to excitations: in fact, Ω1 ∝ 1/

√
MC and in general it

does not show an appreciable dependence on the order in
which the ions are arranged.

The properties of the higher excitations depend on µ
and on the sequence. In particular, the distance among
the eigenenergies changes depending on where the heavy
ions are placed in the sequence. In addition, symmetric se-
quences preserve some properties of a chain of three ions
of equal masses. Thus, the eigenmode of frequency Ω2

(dashed line) is characterized by the out-of-phase oscil-
lation of the external ions, whereas the central ion stands
still. Hence, Ω2 takes the same value for the sequences A
and C, and for the sequences D and F. On the contrary,
in asymmetric sequences and for µ 6= 1 the oscillation am-
plitude of the central ion is relatively large.

For the eigenmode Ω3, in the symmetric sequences
the external ions oscillate in phase, whereas the central
ion oscillates out-of-phase, and its amplitude is a mono-
tonic function of 1/µ. For the sequence C, in particular,
Ω2 > Ω3. The two frequencies are almost degenerate since
both modes correspond to the case where the outer ions

move symmetrically with respect to the center, while the
central ion in Ω3 makes relatively small displacements
(and in Ω2 does not move). On the other hand, in asym-
metric sequences (B, E) the light ions have large oscillation
amplitudes, whereas the displacements of the heavy ions
decrease as µ increases.

These properties have some immediate implications for
quantum information processing with a two-component
chain. For example, the eigenmodes of even parity of sym-
metric sequences are decoupled from the fluctuations of
the electric field at the electrodes, and thus are good can-
didate for the quantum bus. This issue have been discussed
quantitatively for a particular sequence in [11].

Furthermore, in symmetric sequences the parity oper-
ator Π(N) commutes with the one-dimensional Hamilto-
nian H: hence, the eigenstates with odd parity are not
coupled via anharmonicity to the ones with even parity.
The axial motion, however, is coupled to the radial mo-
tion by non-linearities, and in three-dimension there are
no subset of states which are decoupled from the others.
We discuss further this point in Section 3.

Another important implication regards the spacing be-
tween the eigenfrequencies. In fact, when choosing a mode
for processing information, the distance in energy among
the eigenfrequencies should be taken into account, since
the presence of quasi-degeneracies will lower the efficiency
of single mode addressing in quantum logic operations.
Thus, e.g., it is not convenient to use the sequence C and
the mode Ω3 as quantum bus, since the mode frequency
is very close to the value of Ω2.

Finally, from the mechanical properties of the chain
we can infer in which position the cooling ions should be
placed for optimal sympathetic cooling of the chain. We
analyse this aspect in the next subsection.

2.3 Interaction of the crystal with light

In the dipole approximation the coupling of the external
degrees of freedom of an atom with radiation is repre-
sented by the kick operator exp(ik·r), where k is the wave
vector of light and r the atomic position. In a Coulomb
crystal of atomic ions, optical light couples to the internal
degrees of freedom of a single ion, which we consider here a
two-level dipole transition, and to the external degrees of
freedom of the collective motion. Thus, assuming that the
ion j scatters a photon and that |ψi〉 is the motional state
of the crystal before the scattering, after the scattering
the motion of the crystal is described by the state |ψf〉
given by:

|ψf〉 = exp(ikxj)|ψi〉
= eiφ exp(ikqj)|ψi〉, (10)

where φ = kx
(0)
j is a real scalar, and k is the projection of k

on the axis of the crystal. The coupling of radiation to the
collective modes of the crystal is visible by substituting
equation (7) into (10). Thus, the kick operator can be
written as

exp(ikqj) = ΠN
α=1eiηαj (a+

α+aα), (11)
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where ηαj is the Lamb-Dicke parameter for the mode α
and the ion j, and is defined as:

ηαj = kβα′j

√
~

2mjΩα
· (12)

Through the Lamb-Dicke parameter we can infer the me-
chanical response of the crystal to the scattering of a
photon. For one ion of mass m, it corresponds to the
square root of the ratio between the recoil frequency
ωR = ~k2/2m and the trap frequency Ω: η =

√
ωR/Ω,

and it determines how many motional levels are coupled
by the scattering of one photon. The Lamb-Dicke regime
corresponds to the case in which ωR � Ω, and mathe-
matically to the condition η

√
n � 1, where n is the vi-

brational state number. In this limit the kick operator can
be expanded in powers of η, and a change in the quantum
motional state due to the incoherent scattering of one pho-
ton is of higher order in η [20]. In this regime an ion can
be sideband cooled to the ground state of the vibrational
motion [21].

In presence of more than one ion, the Lamb-Dicke pa-
rameter ηαj describes how the displacement of the ion j
couples to the mode α. In particular, it determines (i)
the possibility of addressing a single motional sideband,
which appears when scanning a probe beam through the
resonance frequency (and thus of exciting one mode selec-
tively) [22], and (ii) the possibility of laser-cooling a mode
to its vibrational ground state, in analogy to the one-ion
case.

Let us first consider the response to light of a two-ion
crystal, and compare the case where the ions have equal
masses, as discussed in [22], with the case where they have
different masses. In the first case, due to the symmetry of
the configuration the Lamb-Dicke parameters for each ion
are equal (apart for some difference in the sign). In the sec-
ond case, we can see in equation (12) that the Lamb-Dicke
parameters depend on the mass of the ion, and given the
asymmetry of the crystal the geometrical factor βα′j has
different values for the two ions. One might be tempted
to think that the Lamb-Dicke regime can be more easily
accessed by addressing the heavier ions. This, however,
is actually not true for all modes. This consideration is
particularly applicable to the mode of lowest frequency,
which shares some properties with the center of mass mo-
tion, and in general describes the response of the crystal as
a whole to the mechanical excitation. For this mode, the
displacements of the two ions are comparable, and actually
the displacement of the heavier ion is slightly larger, as can
be seen in Figure 1b. On the contrary, the eigenmode with
frequency Ω+ is characterized by smaller displacements of
the heavy ion than of the lighter one. For this mode, the
heavy ion might be well in the Lamb-Dicke regime, while
the light ion is not.

This situation can be visualized by comparing the ab-
sorption spectra obtained by shining light on each ion sep-
arately. We define the absorption spectrum in a two-level
transition with resonant frequency ω0 and driven by a
laser of frequency ωL through the function I(δ), where

I

10 0 100
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0.4
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10 0 100

0.2
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Fig. 3. Absorption spec-
trum I(δ) vs. the detun-
ing δ for a crystal of
an indium and magnesium
ion obtained shining light
on magnesium and indium,
for a thermal distribution
with average energy 5~Ω−.
Here, η−Mg = 0.22, η+

Mg =

0.5, η−In = 0.38, η+
In =

−0.06, as follows from (12).

δ = ωL − ω0 is the detuning, which is evaluated by sum-
ming all contributions to laser-excited transitions at fre-
quency ωL [22]:

I(δ) =
∑

En−El=δ

|〈n| exp(ikqj)|l〉|2P (n). (13)

Here |n〉 = |(n1, n2)〉 are the motional states of energy
En = n1~Ω1 + n2~Ω2, with nα occupation of the mode
Ωα (α = 1, 2), and P (n) is a normalized distribution over
the motional states |n〉. The coordinate qj characterizes
the driven ion. In Figure 3 we plot I(δ) as a function
of δ for a crystal composed of a magnesium and an in-
dium ion. Figure 3 shows the absorption spectrum when
driving separately the magnesium and the indium ion,
for a thermal distribution over the motional states with
average total energy E = 5~Ω−, where for the chosen
parameters Ω− = 0.552 MHz and Ω+ = 1.456 MHz. In
both cases the motional sidebands of the mode with fre-
quency Ω− are visible, whereas when driving the In+ ion
the sidebands of Ω+ almost disappear. In fact, as eval-
uated from (12) the Lamb-Dicke parameters for Ω− are
η−Mg = 0.22, η−In = 0.38, whereas the ones for Ω+ are
η+

Mg = 0.5, η+
In = −0.06, i.e. the weight of the motional

sidebands for the mode Ω+ in indium is two orders of
magnitude smaller than the ones for the mode Ω−. It is
interesting to compare this result with the case of two ions
of equal masses. In that case the absorption spectrum is
the same independently of which ion of the chain is driven.
Then, if the COM mode is in the Lamb-Dicke regime, the
relative motion mode is also in the Lamb-Dicke regime,
since in that case the Lamb-Dicke parameter scales simply
as the inverse of the squared root of the eigenfrequency.

For crystals with N > 2 ions the factor βαj in (12)
reflects the structure of the chain and consequently how
the driven ion couples to the mode to cool. It thus con-
tains some information on where the cooling ions should
be placed in the sequence so as to achieve more efficient
cooling. This can be theoretically illustrated by a rate
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equation, which describes cooling of one mode in a chain
in the Lamb-Dicke regime [23]. Here, we define the Lamb-
Dicke regime with the condition:

max{j}|ηαj |2nα � 1 for α = 1, ..., N (14)

where nα denotes the occupation of the mode α and where
the set of ions {j} represents the set of positions of the
cooling ions in the chain. Assuming that the laser inter-
acts with the internal two-level transition of the individual
atom, in second order perturbation theory in the param-
eter g/γ, with g Rabi frequency and γ decay rate of the
atomic transition, the excited state can be eliminated, and
one obtains a set of equations projected on the electronic
ground state, where populations and coherences between
different motional states are coupled. In the Lamb-Dicke
limit such coupling can be neglected, thus reducing the
equation for the N -ion density matrix ρ in the low satura-
tion limit to rate equations [22]. Furthermore, introducing
the reduced density matrix ρα for the mode α defined by:

ρα =
∑
nβ1

...
∑
nβN−1

〈nβ1 , ..., nβN−1|ρ|nβ1 , ..., nβN−1〉, (15)

with β1, ..., βN−1 6= α, one can derive the rate equation
for cooling of the mode α in one-dimension [24]:

d
dt
P (nα) =

g2

γ

∑
{j}

ηαj
2[(nα + 1)Aα−P (nα + 1)

− ((nα + 1)Aα+ + nαA
α
−)P (nα) + nαA

α
+P (nα − 1), (16)

the coupling with the other modes being of higher order
in the Lamb-Dicke parameter. Here, P (nα) = 〈nα|ρα|nα〉
and the coefficients Aα± are defined as

Aα+ =
1

16Ω2
α/γ

2 + 1
+

2
5

1
4Ω2

α/γ
2 + 1

, (17)

Aα− = 1 +
2
5

1
4Ω2

α/γ
2 + 1

, (18)

where we have assumed that the Rabi coupling is spatially
constant over the whole crystal and equal to g, and that
the laser is tuned on the first red sideband of the mode Ωα.
Equation (16) is the sum of all contributions to cooling
of mode α from the coupling g of the cooling laser to
the driven ions. It is fully equivalent to the equation for
cooling of one ion in a harmonic trap of frequency Ωα in
the Lamb-Dicke regime [20], apart from the scaling factor
multiplying the term on the RHS of (16):

Wα =
∑
{j}
|ηαj |2. (19)

Provided that (19) is different from zero, it does not af-
fect the steady state, but scales the rate of cooling of the
mode α. The factor Wα represents the contribution of the
cooling ions in the array to the speed of the process. Obvi-
ously, the largest cooling rate is achieved when all ions are
driven by the cooling laser. In that case, Wα has the form
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(a)

Wα

A B C D E F

Wα
(b)

0
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0.6

1 Fig. 4. Cooling rate Wα vs.
all the possible configura-
tions of a N = 3 ionic se-
quence made up of indium
(black circles) and/or mag-
nesium (white circles) ions,
where Wα has been rescaled
by the value of Wmax

α for
a chain of magnesium ions.
Solid line: eigenmode Ω1;
dashed line: eigenmode Ω2;
grey line: eigenmode Ω3 (cf.
Fig. 3).

Wmax
α =

∑N
j=1 |ηαj |2 = ωR/Ωα, where ωR is the recoil fre-

quency of the single ion. The rate of cooling of each mode
scales according to the relation Wmax

α = Wmax
α′ Ωα′/Ωα,

and it scales with the mass m of the cooling ion as
Wmax
α ∝

√
1/m since ωR ∝ 1/m and Ωα ∝ 1/

√
m.

For quantum information processing we are interested
in employing only some ions of the chain for cooling. We
look thus for the best sequence and mode for cooling,
where for “best sequence” we intend a compromise be-
tween the highest number of ions for quantum computa-
tion (i.e. the lowest number of cooling ions) and the largest
cooling rate.

In Figure 4 we plot the factor Wα vs all possible se-
quences of N = 3 ions, made up of magnesium and/or in-
dium ions, where the cooling ions are in (a) indium and (b)
magnesium ions. Note that between the curves in (a) and
(b) there is a scaling factor corresponding, as expected,
to the squared root of the ratio of the ionic masses. The
curves in Figure 4 can be easily interpreted by consider-
ing the properties of the modes, discussed in the previous
subsection. Thus, as the mode of frequency Ω1 is char-
acterized by an oscillation in phase of all ions, and does
not strongly depend on the sequence, the cooling rate in-
creases as the number of cooling ions increases. On the
other hand, the mode with frequency Ω2 is mainly char-
acterized by the oscillation of opposite phase of the ions
placed externally. Thus, large rates of cooling are achieved
when the cooling ions are placed in the external positions.
In particular, the cooling rates of the sequences A and C,
and of the sequences D and F are equal. In fact, these con-
figurations are symmetric under reflection and the mode
with eigenfrequency Ω2 has even parity. Thus, the central
ion does not contribute to cooling nor to quantum infor-
mation processing with the mode. Finally, in symmetric
configurations, the mode of frequency Ω3 is characterized
by large oscillations of the central ions, and a relatively
large rate of cooling is obtained by simply placing the
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cooling ion in the center, as can be noticed for sequence C
in Figure 4a and sequence D in Figure 4b. In asymmetric
sequences (B, E) the rate of cooling in (a) is small, whereas
in (b) is large, as expected from the considerations made
in the previous subsection.

In general, we can conclude that by preparing certain
sequences one can have efficient sympathetic cooling of
some modes using a relatively small number of cooling
ions. This characteristic does not depend strongly on the
mass-ratio µ between the qu-bit and the cooling ions. In
a crystal with large total mass MC, however, the Lamb-
Dicke regime condition can be accessed more easily. In this
respect, it would be better to use heavier ions as qu-bits.

Finally, sequences with an even number N of ions are
to be preferred over sequences with odd N , so that all
positions in the chain contribute either to the quantum
computer or to the cooling process.

3 Effects of the anharmonicity on cooling
and quantum logic

The harmonic approximation of the mechanical potential
in (1) relies on the assumption that V possesses strict local
minima, around which the motion is well-localized. In that
case, the higher orders of its Taylor expansion are a small
correction. For two ions those terms have the form (for
x2 > x1):

δV =
∞∑
n=3

δV (n) =
∞∑
n=3

(−1)n
e2/4πε0
xn+1

0

[q2 − q1]n , (20)

where δV (n) is the nth order correction. The effect of these
terms, the so-called anharmonicity, consists in causing
shifts to the motional energies, and mixing the eigenstates
of the normal modes. Such mixing is in general a small cor-
rection to the eigenstates of the ideal case, but it may be-
come particularly enhanced because of quasi degeneracies
among the motional energies of the states. In fact, the den-
sity of motional states of an N -ion chain in the interval of
energy [E,E+δE] is approximately D(E) ∝ EN−1. Thus,
as the number N of ions increases and/or for larger values
of the motional energies, the dynamics of quasi-degenerate
states are definitely affected by the anharmonicity. Here,
we discuss the effects of the departures from the ideal har-
monic system, first on sideband cooling and then on the
efficiency of quantum logic gates.

In sideband cooling the laser addresses the motional
sideband of the mode to be cooled. Thus, cooling will be
efficient as long as the shift in energy caused by the an-
harmonicity is much smaller than the frequency of one
phonon of the mode addressed. On the other hand, the
mixing between the eigenstates will constitute a thermal-
ization effect among the modes, and it will not constitute
an obstacle to cooling as long as all modes are at suffi-
ciently low temperatures, so that δV is a small correction
to the whole system.

To obtain some estimates, we evaluate the order of
magnitude of the shift to the energy in first order per-
turbation theory, and ask for which range of values of
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Fig. 5. Average occupation of the mode (a) Ω1 = Ω and (2)
Ω2 = 2Ω as a function of the time in unit of the optical pump-
ing time τ , for the harmonic (dashed line) and anharmonic
case (solid line). Here, Ω = 1 MHz, ηΩ = 0.1, η2Ω = 0.1/

√
2,

γ = 0.1Ω, δ = ωL − ω0 = −Ω, g = 0.01Ω, τ = γ/g2. Insets:
population of the modes (a) Ω1 and (b) Ω2 as a function of
their vibrational number at time t = 150τ for the anharmonic
case.

the vibrational numbers sideband cooling may still work.
In [22] it has been shown that in the perturbative regime
δV ≈ δV (3) [25]. Thus:

〈δV (3)〉 ≈ e2/4πε0
x0

(
a0α

x0

)3

n3/2
α , (21)

where a0α =
√
~/miΩα, nα vibrational number of the

mode α, andmi mass of the lighter ion. In deriving (21) we
have assumed nα/Ωα ≥ nβ/Ωβ (α, β = 1, 2, ..., N). Tak-
ing two ions, one indium and one magnesium,Ω1 = 1 MHz
and the mass of magnesium 25Mg+, then |〈δV 〉|/~ ≈
6 × 10−3n

3/2
1 Ω1, which implies that first order perturba-

tion theory holds for n1 � 80 (n2 � 30). In this limit, a
laser tuned on the first sideband to the red of the mode
Ω1 cools the system to the ground state. We have verified
this conjecture numerically: we have taken a two-ion chain
composed of an indium and a magnesium ion, and consid-
ered sideband cooling in the Lamb-Dicke regime of one of
the modes, comparing the case in which the mechanical
potential is fully harmonic with the case where the third
and fourth orders in the anharmonic expansion have been
included. We have not noticed any significant difference
between the two cases, and the system is cooled efficiently
to the ground state. In particular, no visible effect could
be interpreted as due to the anharmonic coupling between
quasi-degenerate states. However, according to the above
estimates, in the interval of states of the numerical calcu-
lation the spectrum of energy is not very “dense”. Then,
in order to verify numerically the effect of anharmonicities
in presence of quasi-degeneracies we take a system with
exact degeneracies, and more specifically with two modes
of frequencies Ω1 = Ω and Ω2 = 2Ω. Here, in the Lamb-
Dicke regime a laser sideband-cools the mode of frequency
Ω1. We compare the harmonic with the anharmonic case,
where here we simply substitute the chosen values Ω1, Ω2

in the quantized form of the displacements of equation (7).
In Figure 5 the average occupation number for the modes
(a) Ω1 and (b) Ω2 is plotted as a function of the time.
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The dashed and solid lines correspond to the harmonic
and anharmonic case, respectively. In the harmonic case
the mode Ω1 is cooled and Ω2 is like “frozen”, since it is
coupled to radiation at higher orders in the Lamb-Dicke
parameter [22]. In the anharmonic case the rate of cool-
ing of the mode addressed is slowed down, whereas the
mode Ω2 is simultaneously cooled: the system is cooled as
a whole, but on a relatively slower time-scale. Thus, the
two modes thermalize on a time-scale which is faster than
the cooling one.

With respect to quantum information processing,
present quantum logic schemes with ions are based on
the harmonic properties of the motion. Thus, they are af-
fected both by the shift in energy and the mixing induced
by the anharmonicity. Quantum gates which require the
preparation of the system in the ground state of the mo-
tion will be very weakly affected, since in that part of the
spectrum the anharmonic perturbation is extremely small,
and there are no quasi-degeneracies. On the other hand,
the perturbation may affect the efficiency of hot gates,
since they operate on higher-lying motional states. Thus,
the speed of hot gates must be faster than the rate of an-
harmonic coupling between quasi-degenerate states. We
can define a time-scale τAnh for the anharmonic perturba-
tion τAnh ≈ ~/|〈δV 〉|. The typical duration of a quantum
gate must be shorter than τAnh. In presence of degener-
ate states which are coupled by three-phonon transitions
(i.e. for Ωα ∼ 2Ωβ), from (21) τAnh ∼ 10 µs given Ωα = 1
MHz and nα ∼ 10. This estimate, which is rather worrying
if compared with the duration of a quantum gate [7,26],
reflects the worst case, which might occur for certain se-
quences, large number of ions and large excitations. Note
that, if the degenerate states are coupled by a four-phonon
transition (i.e. for Ωα ∼ 3Ωβ), then τAnh ∼ 600 µs. In gen-
eral, we expect this problem to arise when working with
a large number of ions and for high excitations. It could
be minimized by choosing symmetric sequences: in that
case the “effective density” of motional states which are
coupled by the anharmonicity of the axial potential will
decrease, since only states with the same parity will be
coupled to each other, whereas the coupling with the ra-
dial degrees of freedom is of higher order.

As a general rule, however, one should avoid degenera-
cies among the radial and the axial frequencies.

4 Conclusions

We have studied the small oscillations behaviour of a two-
component linear crystal, with particular emphasis on the
applications to sympathetic cooling and quantum infor-
mation with the ions, and have discussed the effect of an-
harmonicity on the operations of the ion-trap quantum
computer. We have seen that higher efficiency in quan-
tum information and sympathetic cooling are achieved by
selecting the right ionic sequences. That raises the issue
of how to prepare the desired sequence of ions. A rigor-
ous investigation in this direction should take into account
the full non-linear potential in the three-dimensional space
and it is subject of on-going investigations.
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